Korosi

2.1. Definisi korosi Korosi merupakan proses kerusakan suatu material karena pengaruh lingkungan yang korosif. Lingkungan yang korosif merupakan bagian dari alam. Korosi tidak bisa dicegah keberadaannya, akan tetapi korosi dapat dikendalikan keberadaannya sehingga kita dapat menunda datangnya korosi yang membuat material jadi tahan lebih lama terhadap korosi (1). Material secara umum digunakan dalam berbagai keperluan yang ditujukan untuk memenuhi kebutuhan manusia akan upaya meningkatkan taraf hidupnya. Hal ini merupakan suatu keadaan yang tidak bisa dibantah, dan oleh karena itu teknologi material telah berkembang pesat di dunia ini dan Indonesia sebagai suatu negara yang sedang berkembang harus turut serta dalam penggunaan teknologi material ini secara optimal dan juga mengembangkan teknologi material secara aktif. Tanpa mengusai teknologi material, maka kelangsungan usaha manusia untuk memenuhi kebutuhan akan peralatan akan sia-sia saja, dan Indonesia bila tidak cepat tanggap akan selalu tertinggal dari negara-negara lain yang telah mengembangkan industrinya berbasiskan pada pengetahuan mengenai material yang telah dimilikinya. Korosi merupakan suatu perusakan atau degradasi material yang terjadi secara alamiah. Material diambil dari bumi dan akan kembali secara alamiah pula dengan proses korosi (1). Dalam perjalanan penggunaan material khususnya logam berbagai masalah akan dapat timbul yang disebabkan antara lain oleh : 1. Pemilihan material yang salah

2. Kondisi operasi yang tidak sesuai dengan desain kondisi operasinya

3. Perawatan yang kurang baik

4. Proses manufaktur yang kurang baik Bentuk-bentuk korosi dapat berupa korosi merata, korosi galvanik, korosi sumuran, korosi celah, korosi retak tegang (stress corrosion cracking), korosi retak fatik (corrosion fatique cracking) dan korosi akibat pengaruh hidogen (corrosion induced hydrogen), korosi intergranular, selective leaching, dan korosi erosi. Korosi merata adalah korosi yang terjadi secara serentak diseluruh permukaan logam, oleh karena itu pada logam yang mengalami korosi merata akan terjadi pengurangan dimensi yang relatif besar per satuan waktu. Kerugian langsung akibat korosi merata berupa kehilangan material konstruksi, keselamatan kerja dan pencemaran lingkungan akibat produk korosi dalam bentuk senyawa yang mencemarkan lingkungan. Sedangkan kerugian tidak langsung, antara lain berupa penurunan kapasitas dan peningkatan biaya perawatan (preventive maintenance). Korosi galvanik terjadi apabila dua logam yang tidak sama dihubungkan dan berada di lingkungan korosif. Salah satu dari logam tersebut akan mengalami korosi, sementara logam lainnya akan terlindung dari serangan korosi. Logam yang mengalami korosi adalah logam yang memiliki potensial yang lebih rendah dan logam yang tidak mengalami korosi adalah logam yang memiliki potensial lebih tinggi Korosi sumuran adalah korosi lokal yang terjadi pada permukaan yang terbuka akibat pecahnya lapisan pasif. Terjadinya korosi sumuran ini diawali dengan pembentukan lapisan pasif dipermukaannya, pada antarmuka lapisan pasif dan elektrolit terjadi penurunan pH, sehingga terjadi pelarutan lapisan pasif secara perlahan-lahan dan menyebabkan lapisan pasif pecah sehingga terjadi korosi sumuran. Korosi sumuran ini sangat berbahaya karena lokasi terjadinya sangat kecil tetapi dalam, sehingga dapat menyebabkan peralatan atau struktur patah mendadak. Korosi celah adalah korosi lokal yang terjadi pada celah diantara dua komponen. Mekanisme terjadinya korosi celah ini diawali dengan terjadi korosi merata diluar dan didalam celah, sehingga terjadi oksidasi logam dan reduksi oksigen. Pada suatu saat oksigen (O2) di dalam celah habis, sedangkan oksigen (O2) diluar celah masih banyak, akibatnya permukaan logam yang berhubungan dengan bagian luar menjadi katoda dan permukaan logam yang didalam celah menjadi anoda sehingga terbentuk celah yang terkorosi. Korosi retak tegang, korosi retak fatik dan korosi akibat pengaruh hidogen adalah bentuk korosi dimana material mengalami keretakan akibat pengaruh lingkungannya. Korosi retak tegang terjadi pada paduan logam yang mengalami tegangan tarik statis dilingkungan tertentu, seperti : baja tahan karat sangat rentan terhadap lingkungan klorida panas, tembaga rentan dilarutan amonia dan baja karbon rentan terhadap nitrat. Korosi retak fatk terjadi akibat tegangan berulang dilingkungan korosif. Sedangkan korosi akibat pengaruh hidogen terjadi karena berlangsungnya difusi hidrogen kedalam kisi paduan. Korosi intergranular adalah bentuk korosi yang terjadi pada paduan logam akibat terjadinya reaksi antar unsur logam tersebut di batas butirnya. Seperti yang terjadi pada baja tahan karat austenitik apabila diberi perlakuan panas. Pada temperatur 425 – 815 oC karbida krom (Cr23C6) akan mengendap di batas butir. Dengan kandungan krom dibawah 10 %, didaerah pengendapan tersebut akan mengalami korosi dan menurunkan kekuatan baja tahan karat tersebut. Selective leaching adalah korosi yang terjadi pada paduan logam karena pelarutan salah satu unsur paduan yang lebih aktif, seperti yang biasa terjadi pada paduan tembaga-seng. Mekanisme terjadinya korosi selective leaching diawali dengan terjadi pelarutan total terhadap semua unsur. Salah satu unsur pemadu yang potensialnya lebih tinggi akan terdeposisi, sedangkan unsur yang potensialnya lebih rendah akan larut ke elektrolit. Akibatnya terjadi keropos pada logam paduan tersebut. Contoh lain selective leaching terjadi pada besi tuang kelabu yang digunakan sebagai pipa pembakaran. Berkurangnya besi dalam paduan besi tuang akan menyebabkan paduan tersebut menjadi porous dan lemah, sehingga dapat menyebabkan terjadinya pecah pada pipa. Kombinasi antara fluida yang korosif dan kecepatan aliran yang tinggi menyebabkan terjadinya korosi erosi, seperti yang terjadi pada pipa baja yang digunakan untuk mengalirkan uap yang mengandung air. 2.2 Korosi galvanik Korosi galvanik disebut juga sebagai korosi logam tak sejenis atau korosi dwilogam. Korosi ini terjadi jika 2 buah logam atau logam paduan yang berbeda dalam suatu lingkungan yang sama dan saling berhubungan. Hal ini terjadi karena dihasilkan suatu beda potensial diantara logam tesebut. Prinsip korosi galvanik sama dengan prinsip elektrokimia yaitu terdapat elektroda (katoda dan anoda), elektrolit dan arus listrik. Logam yang berfungsi sebagai anoda adalah logam yang sebelum dihubungkan bersifat lebih aktif atau mempunyai potensial korosi lebih negatif. Pada anoda akan terjadi reaksi oksidasi atau reaksi pelarutan sedangkan pada katoda terjadi reaksi reduksi logam atau tidak terjadi reaksi apa-apa dengan cara proteksi katodik. Deret galvanik adalah suatu daftar harga-harga potensial korosi untuk berbagai logam paduan yang berguna dalam kehidupan. Selain itu deret galvanik juga mencantumkan harga-harga potensial korosi untuk logam-logam murni. Suatu ringkasan dari deret galvanik untuk lingkungan air laut dapat dilihat pada Tabel 1 Untuk meminimumkan terjadinya korosi galvanik salah satunya adalah dengan pemilihan pasangan logam dengan perbedaan potensial yang sangat kecil. Deret galvanik hanya memberikan informasi tentang kecenderungan terjadinya korosi galvanik pada pasangan dua logam atau logam paduan. Jenis korosi ini dapat diketahui dengan baik karena adanya dua logam yang kontak secara elektrik dan tercelup dalam larutan air membentuk sel elektrokimia. Dimana salah satu logam yang relatip kurang mulia akan mengalami korosi dan logam yang lebih mulia tidak akan terjadi korosi. Dasar timbulnya mekanisme reaksi korosi jenis ini karena adanya perbedaan potensial sistem logam dimedia larutan berair yang lebih dikenal dengan deret tegangan logam Sebagai contoh atap seng gelombang yang mengalami korosi pada lapisan sengnya terlebih dahulu, logam baja tidak akan terkorosi selama masih ada lapisan seng dan secara elektrik masih terinteraksi. 2 .3 Faktor-faktor yang Mempengaruhi Korosi Galvanik Terdapat beberapa faktor yang berpengaruh terhadap korosi galvanik yaitu diantaranya: 1. Lingkungan 2. Jarak 3. Luas Penampang 2.3.1 Lingkungan Tingkatan korosi galvanik tergantung pada keagresifan dari lingkungannya. Pada umumnya logam dengan ketahanan korosi yang lebih rendah dalam suatu lingkungan berfungsi sebagai anoda. Biasanya baja dan seng keduanya akan terkorosi akan tetapi jika keduanya dihubungkan maka Zn akan terkorosi sedangkan baja akan terlindungi. Pada kondisi khusus, sebagai contoh dalam lingkungan air dengan temperature 180 oF, terjadi hal sebaliknya yaitu baja mengalami korosi sedangkan Zn terlindungi. Rupanya dalam kasus ini produk korosi pada Zn bertindak sebagai permukaan yang lebih mulia terhadap baja. Menurut Haney, Zn menjadi kurang aktif dan potensialnya menjadi kebalikannya jika ada ion-ion penghalang seperti nitrat, bikarbonat atau karbonat dalam air. Berdasarkan tabel diatas dan menurut penelitian dibeberapa macam kondisi lingkungan, dapat ditarik kesimpulan bahwa : 1. Zn bersifat anodik terhadap baja pada semua kondisi 2. Al sifatnya bervariasi 3. Sn selalu bersifat sebagai katodik 4. Ni selalu bersifat sebagai katodik Korosi galvanik tidak terjadi jika kedua logam benar-benar kering karena tidak ada elektrolit yang memindahkan arus dintara anoda dan katoda. Tabel 3 Perubahan berat baja dan Zn dalam gram untuk berbagai kondisi lingkungan 1 Uncoupled Coupled Environment Zinc Steel Zinc Steel 0,05 M MgSO4 0,00 – 0,04 – 0,05 + 0,02 0,05 M Na2SO4 – 0,17 – 0,04 – 0,48 + 0,01 0,05 M NaCl – 0,15 – 0,15 – 0,44 + 0,01 0,05 M NaCl – 0,06 -0,10 – 0,13 + 0,02 2.3.2 Jarak Laju korosi pada umumnya paling besar pada daerah dekat pertemuan kedua logam. Laju korosi berkurang dengan makin bertambahnya jarak dari pertemuan kedua logam tersebut. Pengaruh jarak ini tergantung pada konduktivitas larutan dan korosi galvanik dapat diketahui dengan adanya serangan korosi lokal pada daerah dekat pertemuan logam. 2.3.3 Luas Penampang Yang dimaksud dengan luas penampang elektroda terhadap korosi galvanik adalah pengaruh perbandingan luas penampang katodik terhadap anodik. Jika luas penampang katodik jauh lebih besar dari pada katoda. Makin besar rapat arus pada daerah anoda mengakibatkan laju korosi makin cepat pula.. Korosi di daerah anodik akan menjadi 100-1000 kali lebih besar jika dibandingkan dengan keseimbangan luas penampang anodik dan katodik. Contoh lain luas penampang elektroda adalah ratusan tangki penyimpanan yang besar dipasang pada bagian utama pabrik yang mengalami program ekspansi. Tangki-tangki yang pertama digunakan adalah terbuat dari baja karbon dan permukaan dalamnya dilapisi atau dilindungi oleh cat phenolik. Tangki-tangki ini dapat digunakan dengan baik untuk beberapa tahun. Akan tetapi lama kelamaan lapisan cat bagian bawah rusak dan menyebabkan terjadinya kontaminasi. Oleh karena itu tangki-tangki yang baru, bagian bawahnya dilengkapi dengan stainless steel yang melindungi baja karbon (stainless steel-clad carbon steel) untuk pemakaian yang lebih baik dan mengurangi biaya perawatan. Kemudian cat pelapis pheonik juga diberikan diseluruh permukaan-permukaan dinding tangki sedangkan bagian bawah tangki yang dilapisi stainless steel tidak diberi lapisan cat karena mempunyai sifat ketahanan korosi yang baik. Namun setelah beberapa bulan dioperasikan, mulai terlihat adanya kebocoran di dinding tangki yaitu di atas penyambung logam/las-lasnya. 2.4 Cara Pengendalian Korosi Terdapat beberapa cara pengendalian yang umum dilakukan untuk mengendalikan korosi galvanik., yaitu antara lain : 1. Pemilihan material yang tepat. Pemilihan material dengan perbedaan potensial dari kedua material agar sekecil mungkin 2. Menghindarkan penggunaan 2 jenis logam yang saling berhubungan dalam suatu kontruksi. 3. Melakukan penggunaan lapis lindung. Jika harus menggunakan lapis lindung maka gunakan lapis lindung pada katoda. 4. Menghindari kombinasi luas penampang material dengan anoda kecil sedangkan luas penampang katoda besar. 5. Menambahkan inhibitor untuk mengurangi keagresifan lingkungan. 6. Merancang dengan baik agar dapat mengganti bagian-bagian anoda yang rusak dengan menggunakan bahan-bahan yang siap pakai atau buatlah anodik yang lebih tebal agar lebih tahan lama. 2.5 Kerugian Akibat Korosi Ditinjau dari segi kerugian akibat korosi dapat digolongkan menjadi tiga jenis yaitu kerugian dari segi biaya korosi itu sangat tinggi atau mahal, kerugain dari segi pemborosan sumber daya mineral yang sangat tinggi dan kerugian dari segi keselamatan jiwa manusia juga sangat membahayakan. 1. Kerugian Ekonomi Akibat Korosi Menurut sumber dari biro Klasifikasi indonesia pada tahun 1997 mengatakan bahwa pada umumnya biaya pengendalian korosi di Indonesia berkisar antara 2 hingga 3,5 % dari GNP ( Growth National Produk ). Biaya pengendalian korosi adalah semua biaya yang timbul untuk menanggulangi korosi mulai dari desain sampai dengan proses pemeliharaan. 2. Pemborosan Sumber Daya Alam Pada dasarnya proses korosi dapat juga didefinisikan sebagai proses kembalinya logam teknis ke bentuk asalnya di alam. Bentuk asalnya logam di alam adalah senyawa-senyawa mineral yang abadi di perut bumi. Pada umumnya senyawa-senyawa mineral logam tersebut merupakan ikatan kimia antara unsur logam dengan unsur logam dengan unsur halogen misalnya oksigen dan belerang. Dengan adanya proses korosi pada struktur bangunan di tempat-tempat yang tersebar di seluruh dunia, mengakibatkan sumber daya mineral yang semula berbentuk logam teknis telah berubah menjadi produk korosi yang tersebar tanpa bisa didaur ulang untuk dijadikan logam teknis kembali.l 3. Korosi Dapat Membahayakan Jiwa Manusia Korosi dapat menimbulkan kecelakaan yang menelan puluhan korban bahkan ratusan korban jiwa atau mencederai manusia disebabkan karena kegagalan dari konstruksi bangunan akibat korosi. Di dunia pelayaran, korban manusia yang meninggal akibat kapal tenggalam jumlahnya sudah sangat banyak. 4. Estetika Menurun Korosi dapat menurunkan nilai estetika suatu material. Hal ini karena korosi dapat merusak lapisan permukaan material.

Perihal Rudyparhusip
be a greatman

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

%d bloggers like this: